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Abstract

Generative models are statistical models that describe how a dataset is generated. Traditional variational

autoencoder (VAE)-based models view this data as being generated by some hidden variables and attempt

to model the statistical properties of these variables. VAEs perform variational inference (VI) - inference of

distributional parameters through minimizing the Kullback-Leibler divergence (KLD) between an approx-

imate and target distribution - through the use of an image encoder. They are trained by minimizing the

“variational loss”, which upper bounds the aforementioned KLD. Gradient Origin Networks [1] (GONs),

on the other hand, replace the encoder and perform VI using a one-step gradient update with respect to

the origin using the variational loss. Building off of GONs, this thesis proposes an encoder-less generative

model based on the predictive coding framework that learns latent representations of image sequences using

only the gradient of the variational loss. Specifically, at each time step in an image sequence, the model

predicts a latent encoding of the current frame. After comparing the prediction to the real frame, the model

uses a one-step gradient update to generate a posterior prediction of the frame. On a variant of the Moving

MNIST [2] dataset called Smooth Moving MNIST, the model is able to produce high-quality reconstruc-

tions of frames. In addition, it is able to successfully perform next-frame prediction using the prior, as well

as predict (to varying degrees of accuracy) multiple time steps into the future. The proposed model is com-

pared to an encoder-based version to assess the relative strength of the framework. Furthermore, an analysis

of the limitations of the inference framework is provided.
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Chapter 1

Introduction

Predictive coding theories of cortical function [3, 4] view the brain as a predictive entity that learns a hierar-

chical generative model of the world. Each level ascending the cortical hierarchy learns neural representa-

tions at successively greater spatiotemporal scales and attempts to predict the neural activity of lower levels.

At the very lowest level, the cortex predicts the incoming sensory stimuli such as visual input. Once sensory

input is received, it can be compared to the predicted input to compute a “prediction error”. This prediction

error can be used to update its predictions. The prediction and error correction happens at every level of the

hierarchy. This theory can be seen as a neural implementation of kalman filtering [3, 5, 6].

Attempts have been made to incorporate predictive coding into deep learning models. PredNet [7] is

a predictive-coding based model for video prediction. However, instead of successively predicting activa-

tions, its neurons predict prediction errors, meaning its generative model is unclear [8]. Dynamic Predictive

Coding Networks (DPCNs) [8] are hierarchical predictive coding models in which higher level activations

predict the transition dynamics of lower level activations using a hypernetwork. MAP inference of the latent

variables is performed through a gradient descent loop that minimizes a joint prediction error loss function.

However, the model is not probabilistic.

Building off of this theory of predictive processing, we aimed to answer the following question: can we

build an efficient probabilistic generative model for video sequences using prediction errors?

To help answer this question, we will first look at some more existing methods in the realm of generative

modeling and encoder-less learning and their drawbacks.
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Generative adversarial networks [9] (GANs) are a type of network that can produce high fidelity images

and learn without an encoder through the use of an adversarial game between a generator network and a

discriminator network. However, they are quite difficult to train [10].

Disentangled sequential autoencoder [11] is a variational autoencoder (VAE) model that can completely

disentangle object identity and motion in video sequences. Improved Conditional VRNN [12] is a hier-

archical VAE model for high-quality video prediction. Clockwork VAE [13] is another hierarchical VAE

model in which higher levels operate over longer time-scales, enabling extremely long-term dynamics to be

modeled. However, each of these models uses an encoder.

DeepSDF [14] is an encoder-less model for learning a latent space for shapes. However, it performs

Maximum-a-Posterior (MAP) inference with gradient descent, which is generally slow compared to an

encoder.

Recent work on Gradient Origin Networks (GONs) [1] demonstrated that variational inference can be

performed in one step using the gradient of the variational loss instead of an encoder. However, GONs were

only designed for and evaluated on image data. If it could be shown that GONs perform well on video

sequences, then it would be one example of an efficient probabilistic generative model built off of prediction

errors.

In this work, I propose an extension of the variational GON framework to the video domain called

“Gradient Origin Predictive Coding” (GOPC). In particular, the contributions of this thesis are as follows:

1. A working implementation of a single level GOPC model (GOPC-1) and demonstrations of its infer-

ence and generative capabilities

2. A comparison of GOPC-1 to an encoder-based version of the model (VAE-1)

3. An implementation of a 2-level, hierarchical GOPC model (GOPC-2)

4. An analysis of the limitations of the GON inference framework and some potential workarounds
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Chapter 2

Background

2.1 Intro

This chapter will cover necessary background information for this project.

2.2 Variational Autoencoders

Suppose we have some dataset X = {xn
i }, where each example xi generated from some latent vector zi.

For ease of notation, let x be some xi and z be the corresponding zi. Inference of z aims to compute the

posterior over z:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)

However, this would require calculating pθ(x):

pθ(x) =

∫
pθ(x|z)pθ(z)dz

which is computationally intractable, since it would require marginalizing over all possible values of z. Al-

though it is possible to approximate the above integral by sampling many values of z, this is an impractically

slow solution, since it would require a huge number of calculations for every single data example.

Instead, VAEs [15] construct an approximate posterior distribution qϕ(z|x) and minimize the Kullback-
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Leibler divergence (KLD) between this approximate posterior and the true posterior:

KL(qϕ(z|x)||pθ(z|x)) = E[log(qϕ(z|x))]− E[log(pθ(z|x))]

Intuitively, this minimization is bringing the approximate posterior, qϕ(z|x), as close as possible to the

true posterior, pθ(z|x). Furthermore, minimizing the KLD between the approximate and true posterior is

equivalent (up to a constant) to maximizing the evidence lower bound (ELBO):

ELBO = E[log(pθ(x|z))]−KL(qϕ(z|x)||pθ(z))

Maximizing E[log(pθ(x|z))] maximizes the likelihood of the data, while minimizing KL(qϕ(z|x)||pθ(z))

regularizes the latent space to be closes to the prior pθ(z), allowing VAEs to generate new data samples from

the prior.

In practice, an encoder performs inference of qϕ(z|x). The “reparameterization trick” allows VAEs

to sample from qϕ(z|x) using z = µ(z) + σ(z)
⊙

ϵ while still training the network end-to-end with

backpropagation. A decoder is used to reconstruct x using z, parameterizing pθ(x|z).

2.3 Gradient Origin Networks

GONs [1] are a type of generative model like VAEs, but do not require encoders. To understand how they

do this, suppose, as VAEs do, that we want to model pθ(z|x), where θ are the generative parameters. Let

ϕ denote inference parameters. Furthermore, suppose we have some noisy observation z0 of z such that

z0 = z +N (0, Id). Then, we can calculate the least squares estimate ẑx of z:
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ẑx(z0) =

∫
zpθ(z|z0,x)dz Bayes Least Squares

= z0 +∇z0 logpθ(z0|x) Proof in [1]

= z0 +∇z0(logpθ(x|z0) + logp(z0)− logpθ(x)) Bayes Rule

= z0 +∇z0(logp(x|z0) + logp(z0)) logpθ(x) constant

Essentially, ẑx is a function of the noisy observation z0 and a gradient with respect to z0 that maximizes

the likelihood of the x and regularizes to the prior over z0.

If we assume a standard normal prior for pθ(z), then we have:

ẑx(z0) = z0 +∇z0(logpθ(x|z0) + logN (z0;0, 2Id))

If some neural network parameterizes pθ(x|z), as well as the calculation of µϕ and σϕ, the reparamater-

ization trick yields us the following inference equation:

ẑx(z0) = z0 +∇z0(logp(x|z0)−KL(N (µϕ(z0),σϕ(z0))||N (0, Id)))

Once we have ẑx, we can

• re-estimate the posterior distribution via N (µϕ(ẑx),σϕ(ẑx))

• and reconstruct the input through pθ(x|ẑx)

To train the weights of the network, we maximize:

pθ(x|ẑx)−KLD(N (µ(ẑx),σ(ẑx)
2)||N (0, Id))
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Figure 2.1: Variational GON Inference Procedure. Dashed lines indicate sampling. Straight lines indi-
cate deterministic transformations. Inference is performed to calculate ẑx, which yields the parameters of
qϕ: µ(ẑx) and σ(ẑx)

2. z is sampled from qϕ using the reparameterization trick.

Thus, the first-order gradient with respect to z0:

∇z0(logp(x|z0)−KL(N (µϕ(z0),σϕ(z0))||N (0, Id)))

essentially acts as the encoder to infer qϕ. Furthermore, note that backpropagating through this network

requires calculating second-order derivatives, meaning that the Hessian matrix must be computed using

∇z0(logp(x|z0)−KL(N (µϕ(z0),σϕ(z0))||N (0, Id))). As such, GONs seem to benefit from using acti-

vation functions with non-zero second-derivatives, such as the ELU non-linearity [16].

A natural choice is to initialize z0 at the origin, given it is the mean of pθ(z) and provides a constant

point to perform inference from.

2.4 Hypernetworks

Hypernetworks [17] are networks that create the weights of other neural networks. For example, suppose

we had some neural network F such that that: x = F (z), where x and z are some vectors. A hypernetwork

H could be used to generate the weights of F: WH
1 ,WH

2 ,WH
3 = H(z). Let FH be the neural network F,
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but with it’s weight matrices replaced by H(z). Then, we could predict x:

x = FH(z)

This is a trivial example, but hypernetworks have been used extensively in models with temporal compo-

nents, such as recurrent neural networks.

2.5 Dynamic Predictive Coding Networks

In DPCNs, lower level latent variables generate each observation in an image sequence, and a higher level

latent variable generates the transition dynamics of the lower level variables.

To begin, suppose we have some dataset of n image sequences of length T: X = {xn
1:T }. Furthermore,

suppose the observation xt at time t is generated by a lower level latent variable rt. Let rH be a higher level

latent variable that conditions all the lower level vectors.

We could factorize the generative model as follows:

p(X1:T , r1:T , r
h) = p(rh)p(r1)

T∏
t=1

p(xt|rt)
T∏
t=2

p(rt|rt−1, r
h)

Suppose that p(rt|rt−1, r
h) is implemented by a hypernetwork H that takes in rh and generates a

transition function V for rt−1:

V = H(rH)

Then, rh is generating the transition dynamics of r1:T .

MAP inference is performed in this model to infer the latent variables by minimizing the following loss

function with respect to rt and rh:

L =
T∑
t=1

||xt − U(rt)||22 +
T∑
t=2

||rt − V (rt−1)||22
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where U is some decoding function used to reconstruct the frame using the lower level latent vector. This

inference is performed at each time step through a gradient descent loop.

2.6 Kalman Filters

Suppose we have some dataset of n image sequences of length T: X = {xn
1:T }. Furthermore, suppose the

observation xt ∈ Rd at time t is generated by some latent vector rt ∈ Rk. In addition, suppose that all

computations are performed using linear transformations, meaning that all latent variables and observations

are drawn from Gaussian distributions and all probabilities are Gaussian distributions.

In a kalman filter [18], we have a dynamical model for temporal transitions:

rt+1 = V rt +GWt

where V and G are some matrices and Wt ∼ N (0, Q).

We can also derive the mean r̂t+1 and variance ¶t+1 over this distribution:

r̂t+1 = V rt

Pt+1 = V PtV +GQGT

There exists an observation model, xt = Crt + vt, where v ∼ ′,R. Computing the mean and variance:

E(xt+1|x1:t) = Cr̂t+1

E((xt+1 − x̂t+1)(xt+1 − x̂t+1)|x1:t) = CPt+1C
T +R

Suppose that the Kalman filter has created a prediction with mean r̂t+1 using the dynamical model. The
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Kalman filter will then use an update to fully infer r̂t+1 and Pt+1:

r̂t+1 = r̂t+1 +Kt+1(xt+1 − Cr̂t+1)

Pt+1 = Pt+1 −KCPt+1

where Kt+1 = Pt+1C
T (CPt+1C

T +R)−1 is the Kalman gain matrix and scales the prediction error.

Essentially, the Kalman filter first makes a prediction of the latent variable r̂t+1 using the dynamical

model. Then, it uses the observational model to predict the image, which results in a prediction error

xt+1 − Cr̂t+1. This prediction error is weighted by the Kalman gain and then used to update r̂t+1.

For more details on Kalman filters (much of the math was omitted from this derivation), see [18] (which

this derivation was modeled using).
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Chapter 3

Single-Level GOPC Model

In this chapter, we examine the capabilities of a single-level GOPC model and compare it to an encoder-

based version of the model.

Let x1:T denote one video sequence of T frames. Suppose that each frame xt is generated by some

latent vector rt.

3.1 Generative Model

The generative model factorizes as follows:

p(x1:T , r1:T ) = r1

T∏
t=1

pθ(xt|rt)
T∏
t=2

pθ(rt|r1:t−1)

We chose r1 to be drawn from a standard gaussian distribution: r1 ∼ N (0, I). θ denotes the parameters

of the generative model. We parameterize the decoder pθ(xt|rt) with a transpose convolutional network

and the temporal transitions pθ(rt|r1:t−1) using three LSTM cells [19] stacked together. The latent vector

on time t is dependent on all of the previous latent vectors, while the generation of the frame at time t

is dependent only on the latent vector for the current timestep. Refer to Figure 3.1 for a diagram of the

generative model and Algorithm 1 for the full generative process.
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rtrt−1 rt+1

xt−1 xt xt+1

Figure 3.1: Single-Level Level GOPC Generative Model. The latent vector rt+1 is dependent on r1:t,
while the frame xt+1 is dependent only on rt+1.

Algorithm 1 Generative Algorithm

1: r1 ∼ N (0, I)
2: x1 = G(r1)
3: h0, c0 = 0,0
4: t = 2
5: while t ≤ T do
6: ht = LSTM(rt−1,ht−1, ct−1)
7: Calculate µt and log(σ2

t ) from ht

8: Get rt through reparameterization trick on µt and log(σ2
t )

9: xt = G(rt)
10: t = t+ 1

3.2 Inference Model

Inference aims to compute the following posterior using a one-step gradient update:

qϕ(r1:T |x1:T ) =

T∏
t=1

qϕ(rt|xt, r1:t−1)

In practice, inference is performed using a one-step gradient update:

ẑxt(z0) = z0 +∇z0(logp(xt|r0)−KL(N (µ(z0),σ(z0)
2)||NP (µt,σ

2
t )))

= z0 +∇z0(logp(xt|r0)−KL(qϕ(µ(z0),σ(z0)
2)||pθ(µt,σ

2
t )))

where r0 ∼ N (µ(z0),σ(z0)).
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The influence of r1:t−1 comes in through the KLD term, KL(qϕ(µ(z0),σ(z0)
2)||pθ(µt,σ

2
t )). By

minimizing this KLD term, we condition rt on r1:t−1 in some capacity.

At each time step t during inference, we initialize a latent vector, z0, at the origin. Using z0, we calculate

an initial estimate over the posterior distribution. After sampling r0 from this distribution, we feed it to the

decoder to create an initial estimate of the current frame xt. Then, we update z0 using the gradient of

the full ELBO to get ẑxt . Now, we can recalculate the posterior using ẑxt , and then create the corrected

posterior estimate of the current frame. Refer to Algorithm 2 for the full inference process, and Figure 3.2

for a diagram of the inference process.

rtrt−1 rt+1

z0/ẑxt z0/ẑxt z0/ẑxt

xt−1 xt xt+1

∆ ∆ ∆

Figure 3.2: 1 Level GOPC Inference Model. Dashed lines indicate sampling. Straight lines indicate
deterministic transformations. At each time step t, z0 is initialized at the origin and rt (this initial estimate
is also referred to as r0) is sampled from qϕ(µ(z0),σ(z0)

2). The frame xt is predicted and ẑx is calculated
using ∇z0ELBO. Then, the updated rt is sampled from qϕ(µ(ẑxt),σ(ẑxt)

2).

This model can be though of as a nonlinear Kalman filter in which temporal dynamics are modeled

through the LSTM prior (from the generative model) and the Kalman update occurs through the one-step

gradient update.

3.3 Learning

To do the gradient update, we minimize the following loss function:

MSE(xt|x̂r0) +KL(qϕ(µ(z0),σ(z0)
2)||pθ(µt,σ

2
t ))
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Algorithm 2 Inference Algorithm
1: t = 1
2: while t ≤ T do
3: z0 = 0
4: Calculate µt and log(σ2

t ) from z0

5: Get initial estimate of rt (r0) through reparameterization trick on µt and log(σ2
t )

6: x̂r0 = G(r0)
7: ELBO = (xt − x̂r0)

2 +KL(qϕ||pθ)
8: ẑxt = z0 −∇z0ELBO
9: Recalculate µt and log(σ2

t ) from ẑxt

10: Get corrected posterior estimate of rt through reparameterization trick on µt and log(σ2
t )

11: x̂rt = G(rt)
12: t = t+ 1

We train the weights of the model through backpropagation to minimize the ELBO loss:

MSE(xt|x̂rt) +KL(qϕ(µ(ẑxt),σ(ẑxt)
2)||pθ(µt,σ

2
t ))

where rt is sampled from qϕ(µ(ẑxt),σ(ẑxt)
2).

The weights of the network are updated using the ELBO calculated after doing the gradient update. Note

that the hessian matrix must be calculated since second-order derivatives are used. Refer to 3 for the full

learning algorithm.

Algorithm 3 Learning Algorithm

1: for each minibatch do
2: t = 1
3: total_loss = 0
4: while t ≤ T do
5: Calculate prior distribution, p
6: Calculate posterior distribution, q
7: Get x̂t using sample from q
8: Calculate ELBO = (xt − x̂t)

2 +KL(q||p)
9: total_loss = total_loss+ ELBO

10: t = t+ 1

11: Backprop total_loss and update parameters of model

17



3.4 Experiments

We trained our models using the Adam [20] optimizer, a learning rate of 1e-3, and batch size of 50. We

trained each model for a total of 50 epochs. We evaluate our models on the Smooth Moving MNIST dataset.

We use an instantiation of the dataset in which each video contains one digit moving across a frame of size

64x64 pixels for 20 timesteps.

3.4.1 GOPC-1 Results

Figure 3.3: GOPC Inference Results. Three sequences are shown. For each sequence, we show the ground
truth sequence, the prediction by the prior (prediction before gradient update), the error between the prior
prediction and the ground truth sequence, and the posterior correction.

Figure 3.3 demonstrates how the model performs when it can correct itself with the prediction error.

When the error of the sequence predicted by the prior is high (i.e. at the beginning two timesteps when

information about dynamics is known), the posterior is able to produce much better reconstructions than the

prior.

Figure 3.4 demonstrates how well the model performs when predicting into the future using the prior

(so no error correction is present). After a few timesteps, the lack of prediction error means the model gets

confused and starts changing the digit identity (i.e. a “9” to a “4”).
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Figure 3.4: GOPC Predictions Conditioned on Five Context Frames. Three sequences are shown. For
each sequence, we show the ground truth sequence and predictions. Predictions before the red line are using
the posterior (so after the gradient update). After the red line, we turn off the error correction and sample
for 15 time steps into the future using the prior.

3.4.2 Comparison to Using an Encoder

In this subsection, we build a version of the GOPC-1 model that uses an encoder to perform inference instead

of the one-step gradient update. We will refer to this model as VAE-1. The generative model is the same as

GOPC-1:

p(x1:T , r1:T ) = r1

T∏
t=1

pθ(xt|rt)
T∏
t=2

pθ(rt|r1:t−1)

The inference model is quite similar:

qϕ(r1:T |x1:T ) =
T∏
t=1

qϕ(rt|xt)

There are two primary differences. First, the inference model in VAE-1 uses a convolutional neural network

to encode each frame. Second, the inference model in VAE-1 conditions rt only on the current latent vector.

GOPC-1 conditions rt on r1:t−1 through the KLD term KL(qϕ(µ(z0),σ(z0)
2)||pθ(µt,σ

2
t )). However, we

cannot represent this error minimization in the same way using an encoder, since there is no prediction error.

Although the encoder is implicitly doing something similar (since its weights are trained through minimizing

both reconstruction error and KLD), it is not directly doing this in the same manner on each example at
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test time. It would be possible to condition rt on r1:t−1 using some sort of recurrent neural network in

the posterior; however, this would add extra parameters to VAE-1 and also lead to further architectural

differences, which would further exacerbate issues of unfairness in the comparison. We view this current

architecture as the fairest way to do a comparison between VAE-1 and GOPC-1, with the note that VAE-1

may lose some representational power since its encoder gets no temporal information.

Figure 3.5: VAE-1 Inference Results. Three sequences are shown. For each sequence, we show the ground
truth sequence, the prediction by the prior, the error between the prior prediction and the ground truth
sequence, and the posterior prediction (using an encoder).

Figure 3.6: VAE-1 Predictions Conditioned on Five Context Frames. Three sequences are shown. For
each sequence, we show the ground truth sequence and predictions. Predictions before the red line are using
the posterior (so using an encoded frame). After the red line, we sample for 15 time steps into the future
using the prior.
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Model Number of Parameters Mean (↓) STD (↓)
GOPC-1 3532610 0.0252 0.0086
VAE-1 3993986 0.0206 0.0064

DIFFERENCE 461376 0.0046 0.0022

Table 3.1: Comparison between posterior predictions of GOPC-1 and VAE-1 for full video sequences.
We compare the number of parameters in GOPC-1 and VAE-1, as well as the mean and standard deviation
(STD) of reconstruction error across the test set.

Model Number of Parameters Mean (↓) STD (↓)
GOPC-1 3532610 0.0393 0.0108
VAE-1 3993986 0.0374 0.0102

DIFFERENCE 461376 0.0019 0.0006

Table 3.2: Comparison between prior predictions of GOPC-1 and VAE-1 for full video sequences.
We compare the number of parameters in GOPC-1 and VAE-1, as well as the mean and standard deviation
(STD) of reconstruction error across the test set.

Figure 3.5 demonstrates how the model performs when it reconstructs the frame using an encoder. Figure

3.6 demonstrates how well the model performs when predicting into the future using the prior (so it can no

longer use encoded frames to assist itself). It seems that digit identity is maintained better while predicting

into the future with VAE-1 than GOPC-1, suggesting that VAE-1 has learned a better prior.

Refer to Table 3.1 for a quantitative assessment of the posterior prediction capabilities of GOPC-1 and

VAE-1 across the test set. Even though GOPC-1 saves parameters, VAE-1 is consistently better at recon-

structing samples using the posterior.

Refer to Table 3.2 for a quantitative assessment of the prior prediction capabilities of GOPC-1 and VAE-

1 across the test set. Again, even though GOPC-1 saves parameters, VAE-1 is consistently better at the task

of next-frame prediction using the prior.
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Chapter 4

Hierarchical GOPC Model

In this chapter, we look at implementing a GOPC version of DPCN, which was described in Chapter 2.5.

We will refer to this hierarchical GOPC model as “GOPC-2”.

4.1 GOPC-2 Implementation

In the GOPC version of DPCN, the generative model remains the same:

p(X1:T , r1:T , r
h) = p(rh)p(r1)

T∏
t=1

p(xt|rt)
T∏
t=2

p(rt|rt−1, r
h)

where p(rt|rt−1, r
h) implemented by a hypernetwork so that rh is generating the transition dynamics of

r1:T .

However, rather than use a gradient descent loop to infer the latent variables, inference at time t is

performed in two steps. The first step uses a gradient update to infer the lower level latent variable rt in the

same manner as GOPC-1:

qϕ(rt|xt) = qϕ(rt|xt, r1:t−1)

After inferring rt, GOPC-2 updates rH using the prediction error between the actual rt and the prior

prediction r̂t, as well as a KLD term to regularize the latent space of rH . This gradient update is imple-
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mented as follows:

rH = rH −∇rH (||rt − r̂t||22 +KL(qϕ(r
H)||N (0, I)))

where r̂t is predicted using the transition function generated by H(rH ) (H refers to the hypernetwork).

4.2 Instability

I was not able to successfully train GOPC-2; within a few iterations, gradients would explode to extremely

large values, resulting in “Not a Number” (NaN) values appearing and crashing the model. It appears

the performing GON-style inference through a hypernetwork is very unstable, as the hessian matrix must

be computed numerous times through a hypernetwork, which has a huge number of multiplications. Us-

ing more gradient steps to infer rH simply exacerbated the gradient explosion problem. Regularizing the

weights of the predicted transition function, adding layer normalization [21] or batch normalization [22] to

the hypernetwork, applying a TanH activation function, layer normalization, or batch normalization to the

weights of the transition function, and clipping the gradients of ∇rH each did not not solve the problem.

Tuning the learning rate of the model did not help either.

4.3 Stabilizing Techniques

Only two techniques seemed to ease some of the problems with gradient explosion: applying a sigmoid

activation function to the vector predicted by the transition function, or feeding that predicted vector through

a layer normalization layer.

The problem of gradient explosion still occurred sometimes on the full Smooth Moving MNIST dataset.

However, when using just a single digit or a few digits, it was possible to train the network without it

generating NaN values and crashing.

However, the model was not able to produce quality predictions using the prior, suggesting that these

techniques significantly weakened what the prior was able to learn.
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Chapter 5

Limitations

There are three general limitations I have identified with the GON inference procedure:

• Learning and inference are unstable when using a hypernetwork and can lead to exploding gradients

that quickly crash the model, making it very difficult to train.

• Although less parameters are required compared to an encoder-based model, it is significantly slower.

• Difficult to implement with multiple latent variables.

Chapter 4.3 already discussed the issue of instability. In this chapter, we will focus on the issues of training

speed and implementation difficulty.

5.1 Speed of Model

Although less parameters are required in a model using GON inference without the need of an encoder, the

model has to use second-order derivatives in its optimization, since partial derivatives must be calculated

with respect to the inferred vector: ∇z0(logp(xt|r0)−KL(qϕ(µ(z0),σ(z0)
2)||pθ(µt,σ

2
t ))). As such, the

Hessian matrix using ∇z0(logp(xt|r0)−KL(qϕ(µ(z0),σ(z0)
2)||pθ(µt,σ

2
t ))) must be calculated, which

is computationally more demanding than a feedforward encoder.

I evaluated the training speed of GOPC-1 and VAE-1 used a training set of 17500 data samples with

a batch size of 50 (350 batches total). I evaluated how long it took each model to train for one epoch on
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Model Number of Parameters Time (seconds) (↓) Batches / Second (↑)
GOPC-1 3532610 206 1.7
VAE-1 3993986 138 2.5

DIFFERENCE 461376 68 0.8

Table 5.1: Comparison between between training speed of GOPC-1 and VAE-1. We compare the
number of parameters in GOPC-1 and VAE-1, how long each model took to train for one epoch on the
training set (17500 samples, batch size 50, 350 batches), and the training rate in batches per second.

the entire training set (including adjusting the weights via backpropagation). My implementation of the

model is on PyTorch, and I evaluated the model using a GTX 1080 Ti GPU. Refer to 5.1 for the results of

the comparison. In short, although GOPC-1 saves 461376 parameters, VAE-1 trains around runs through a

batches around 33% faster.

5.2 Difficult to Implement

Furthermore, it can be quite difficult to implement hierarchical generative models with multiple latent vari-

ables using GON inference. For example, consider the generative model from Clockwork VAE (CWVAE)

[13], shown in Figure 5.1:

Figure 5.1: Clockwork VAE Generative Model. Figure taken directly from [13].

In this generative model, higher-level latent variables operate over longer timescales than the levels

below it. For example, the same variable on the second level may condition two variables on the first level,

meaning that the second level variable needs to be inferred using two input frames. Each of the first-level

variables only need one input frame to infer.
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Figure 5.2: Improved Conditional VRNNs Generative Model. Figure taken directly from [12].

The question arises: how do we infer these latent variables using GON inference? Do we use multiple

zero vectors, infer the high-level variable first using the prediction error from two input frames, and then

infer the two lower-level variables that are conditioned on this higher-level variable?

For example, we could infer ẑ2
x1,x2

(and then sample s21 from the resulting posterior parameters) using:

ẑ2
x1,x2

(z2
0) = ∇z2

0
(logpθ(x1|s11, s21) + logp(x2|s12, s21))−KLD(qϕ(µ(z

2
0),σ(z

2
0)

2)||pθ(µs21
,σ2

s21
)))

Then, we could infer ẑ1
x1

(and then sample s11):

ẑ1
x1
(z1

0) = ∇z1
0
(logpθ(x1|s11, s11)−KLD(qϕ(µ(z

1
0),σ(z

2
0)

2)||pθ(µs11
,σ2

s11
|s21)))

Then, we could infer ẑ1
x2

(and then sample s12):

ẑ1
x2
(z1

0) = ∇z1
0
(logpθ(x2|s12, s21)−KLD(qϕ(µ(z

1
0),σ(z

2
0)

2)||pθ(µs12
,σ2

s12
|s21)))

This inference procedure would require three gradient updates (one to arrive at s21, one to arrive at s11,

and one to arrive at s12), which would significantly slow down the model. Other implementations may require

even more gradient updates.

Consider the generative model from [12] (Figure 5.2) as another example. In this generative model, each

higher-level latent vector conditions all of the latent vectors below it. In addition, each latent vector is fed

into the decoder to predict the image.

The question again arises: how would we implement this using the GON inference framework? Would
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we use multiple gradient steps? Would we use multiple zero vectors? Would we just one zero vector at the

highest level and perform top-down inference? Would we get rid of the zero vector and choose to update

something else using the gradient?

In summary, there exist issues in the GON inference procedure when it is unclear what the noisy “ob-

servation” should be set to in cases where there are multiple hierarchical or sequential latent variables. In

the case of both CWVAE and Improved Condititional VRNNs, I believe it it is significantly simpler to use

an encoder for inferring the posterior of the latent variables implementing amortized variational inference.
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Chapter 6

Conclusion

In this thesis, I have proposed Gradient Origin Predictive Coding and demonstrated its strengths and weak-

nesses through two different parameterization design choices.

In particular, I have provided a working implementation of a single level GOPC model (GOPC-1) and

demonstrations of its inference and generative process and performances. I have also compared GOPC-1 to

an encoder-based version of the model (VAE-1).

Furthermore, I have provided an implementation of a two-level, hierarchical GOPC model (GOPC-2).

Lastly, I have provided an analysis of the limitations of the GON inference framework and some potential

fixes.

Future work could focus on stabilizing the training process of the proposed hypernetwork model GOPC-

2. In addition, it would be interesting to see if it is possible to use the GON inference procedure in other

hierarchical latent variable models such as CWVAE.
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